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S U M M A R Y  
The Hartmann problem for the viscous laminar flow of an electrically conducting liquid between parallel walls with a 
transverse magnetic field is examined when effects of both thermal conductivity and radiation are significant. Details 
of the temperature distribution and radiative flux are presented. 

1. Introduction 

In a recent paper [1] the present author has studied the effects of thermal radiation upon 
Hartmann flow when thermal conductivity is insignificant. The importance of this case lies 
in the fact that then the governing equations may be solved exactly so that explicit forms for the 
temperature distribution and radiative flux may be obtained. 

However such a model suffers from the serious defect that, in reality, it is most unlikely that 
thermal conductivity will be negligible if thermal radiation is not. Since in the absence of 
thermal conductivity no mechanism is present which can adjust the temperature of the fluid 
to that of an adjacent boundary, one finds the temperature profile discontinuous at its end 
points with a failure to match the temperature of the bounding wall. By analogy with the similar 
behaviour of the velocity in non-viscous flows it is usually considered that this unrealistic 
behaviour may be removed by the introduction of a thermal boundary layer. 

In this paper the full system of governing equations for thermally conducting radiative 
Hartmann flow are treated without further approximation and numerical solutions obtained 
from which the precise nature of the effect of thermal conductivity may be deduced. The basic 
problem here studied is identical to that formulated in the earlier paper to which reference 
should be made for details. We proceed here merely to restate the fundamental equations 
governing the flow as presented there and then to develop the numerical solution. 

2. The governing equations 

A liquid of electrical conductivity o-, thermal conductivity k and coefficient of viscosity t/is 
taken to flow between two infinite parallel insulating flat walls distance 2h apart with transverse 
applied magnetic field Bo and orthogonal electric field Eo. If y denotes the distance from 
mid channel taken normally to the. walls and all flow properties are assumed functions of y 
alone then with a pressure gradient Po down the channel one may derive the basic equations 
for the velocity, u, and temperature, T, as follows 

dy tl dy - aBgu+(p~176176 = 0,  (1) 

d ( d T )  rl(dU~2 dq 
kTy + \dy/  (21 

For the present one-dimensional problem the differential approximation to the exact equation 
of radiative transfer for the radiative flux, q, may be employed, viz. 
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d2q 3~2q = d (~ctT4) (3) 
dy 2 dy 

where a is a volumetric absorption coefficient and # is Stefan's constant. 
The boundary conditions appropriate to these equations are able to be stated quite simply. 

If the lower wall at y = - h has emissivity e 1 and temperature T1 whilst the upper wall at y =  h 
has emissivity e 2 and temperature T 2 both walls being taken at rest these conditions are 

u = O ,  y = •  (4) 

T'=-T:, y = - h ;  T = T  2, y = + h  (5) 

- -  q a d y  - O ,  y =  - h  (6) 

4 - 2  q +  = 0 ,  y = + h .  (7) 
e 2 O~ dy 

Clearly equation (1) with boundary conditions (4) separates from the remaining equations 
to yield the velocity, the distribution of which is unaffected by either thermal conductivity or 
radiation. 

It is useful to introduce the following notation 

p ={pohl~)( 1 ) pressureratio 
\ B 2 J ~ = magnetic Reynolds number '  

J 
= ( ~ )  ( ~ )  = current ratio , 

magnetic Reynolds number 

which are related by 

1 
P = J +  

M coth M -  1 " 

In addition we write 

= Hartmann number ,  

o T~ 
m T1 = temperature ratio across the channel,  

o9 = ~h = Bouguer number ,  

( ~ T 4 " ~ ( ~ l  Reynolds number 

N = ~ Po U3o} = Boltzmann number '  

v \% T1/(k p) = (Eckert number)(Prandtl number), 

T 
0 = - -  T1 = dimensionless temperature, 

q 

Q - #T~ 

radiative flux 

black wall emissive power 

Y = -  
h 

= dimensionless channel coordinate. 
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Then with the insertion of the form for the velocity derived from equation (1) the remaining 
equations (2) and (3) which govern the problem may be written as the first order system 

dO 
dT=  ' 
dQ 
d7=4 
d._~ 

= Nv(o-M2v I P  2 + 
d( sinh 2 M 

d~ = 3o)2 Q +  16~o03 
d( 

where the boundary conditions (5)-(7) become 

0 = 1 ,  q ~ = ~  - Q,  at ~ = - 1  ; 

M 2 ( p _  j)2 cosh 2M~ 

0 = O ,  q ~ = - o ~  '-- Q ,  at ~ = + 1 .  

_ 2MP(P-J)cOShsinh M M ( }  

3 .  A n a l y s i s  

The solution of the above equations under the specified boundary conditions forms a two 
point boundary value problem of considerable magnitude. It proves to be impossible to obtain 
a solution within a reasonable time using standard procedures of numerical analysis and a 
digital computer,  for other than trivial values of the parameters.  Accordingly recourse was 
had to analogue methods of computat ion which, despite extreme sensitivity of the solution at 
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Figure 1. Radiative flux and temperature ~1 = 1, e2 = 1, O = 1.All cases J = 1, o) = 0.1, N = 0.0l. As labelled v = 0. l 1, 5, m. 
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Figure 2. Radiative flux and temperature e 1 =0.1, ~2 =0.1, O= 1. All cases J=  1, o)=0.1, N=0.01. As labelled v=0.1, 
1, oo. 
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Figure 3. Radiative flux and temperature e 1 = 1, e2 = 1, O = 10. All cases J =  1, co=0.1, N=0 .01 .  As labelled v=0.1,  
1, 2, ~ .  

o ~ o ~ . I  

5 1 

-1 -I 0 ~ ~ ~ '~ 
M"O 4t~ M-1 4c, M'2 

Figure 4. Radiative flux and temperature ex =0.1,  kz =0.1, O = 10. All cases J =  1, 0~=0.I, N =0.01. As labelled v =0.1, 
1, ~ .  

one end of the range to changes in the boundary values taken at the other end, and thus 
difficulty in fitting the overall boundary conditions, were successfully employed. 

The distributions for radiative flux and temperature are presented in figures 1 to 4 in the case 
J = 1 corresponding to an electromagnetic brake for three values of Hartmann number and a 
variety of wall emissivities 81, e2 and temperature ratio O with constant radiative parameters 
~o and N. In each instance values of the thermal conductivity parameter v have been chosen 
representative of various degrees of thermal conductivity together with that, v = m, appropriate 
to the non-conducting case. The graphical representations are self-explanatory and in need 
of no further general comment, but it is worth noting the strong indications of the existence of a 
thermal boundary layer when the thermal conductivity is low, an effect which, as expected, is 
unaffected by the presence of radiation. 

Finally it is a pleasure to acknowledge the assistance of Mr. T. Jenkins of the Computing 
Laboratory in the University of Bradford whose expert manipulation of the EAL 680 analogue 
computer in this university produced the above solutions. 
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